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Abstract
A honeypot is used to attract and monitor attacker activities and capture val-

uable information that can be used to help practice good cybersecurity. Predictive modelling 
of a honeypot system based on a Markov decision process (MDP) and a partially observable 
Markov decision process (POMDP) is performed in this paper. Analyses over a finite planning 
horizon and an infinite planning horizon for a discounted MDP are respectively conducted. 
Four methods, including value iteration (VI), policy iteration (PI), linear programming (LP), 
and Q-learning, are used in the analyses over an infinite planning horizon for the discounted 
MDP. The results of the various methods are compared to evaluate the validity of the cre-
ated MDP model and the parameters in the model. The optimal policy to maximise the total 
expected reward of the states of the honeypot system is achieved, based on the MDP mod-
el employed. In the modelling over an infinite planning horizon for the discounted POMDP 
of the honeypot system, the effects of the observation probability of receiving commands, 
the probability of attacking the honeypot, the probability of the honeypot being disclosed, 
and transition rewards on the total expected reward of the honeypot system are studied.
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1. Introduction 

Cybersecurity is concerned with the privacy and security of computers or electron-
ic devices, networks, and any information that is stored, processed, or exchanged 

by information systems [1]. Parameter design, monitoring, and network maintenance 
are important to network cybersecurity. The detection and prevention of attacks are 
generally more significant than any subsequent actions taken after being attacked [2]. 
It is helpful to obtain as much information as possible from attacks to defend against 
attackers and improve the cybersecurity of information systems [3]. A honeypot sys-
tem can collect information from an attack about the attackers and may aid in the prac-
tice of robust cybersecurity. A honeypot is used to attract attackers and record their 
activities [4].

Attackers can be attracted to a fake system by a honeypot in the network 
infrastructure; valuable information can be obtained from them; and the information can 
then be used to improve network security [4]. A honeypot constitutes a useful tech-
nique or tool to observe the spread of malware and the emergence of new exploits. An 
attacker tries to avoid connecting to a honeypot as it can disclose the attacker’s tools, 
methods, and exploits [5]. A honeypot is also a source that can be leveraged to build 
high-quality intelligence against threats, providing a means for monitoring attacks and 
discovering zero-day exploits [6]. A network honeypot is often used by information se-
curity teams to measure the threat landscape for the security of their networks [7]. One 
example of a stochastic process method, the MDP, has been used for decision-making 
in cybersecurity. The MDP assumes that both defenders and attackers have observa-
ble information, although this is not true in many applications [8]. In actuality, there may 
be partial observability or an agent’s inability to fully observe the state of its environ-
ment in numerous real situations [9]. In many real-world problems, their environmental 
models are not known. There is a considerable need for reinforcement learning to solve 
problems where agents partially observe the states of their environments (possibly due 
to noise in the observed data). This leaves the outcomes of actions under uncertainty 
more dependent on the signal of the current state. The POMDP extends the MDP by 
permitting a decision-making process under uncertain or partial observability [10]. The 
artificial intelligence (AI) world has shown a huge leap recently in the research area of 
the POMDP model [11]. 

An MDP model for interaction honeypots was created and an analytic 
formula of the gain was derived. The optimal policy was decided based on comparing 
the calculated gain of each policy and selecting the one with a maximal gain. The mod-
el was then extended using a POMDP. One approach to solving the POMDP problem 
was proposed. In this method, the system state was replaced with the belief state and 
the POMDP problem was converted into an MDP problem [12]. The efforts in the re-
search of this paper were to fulfil predictive modelling of the honeypot system, based 
on the MDP and the POMDP. Various methods and algorithms were used, including 
VI, PI, LP, and Q-learning in the analyses of the discounted MDP over an infinite plan-
ning horizon. The results of these algorithms were evaluated to validate the created 
MDP model and its parameters. In the modelling of the discounted POMDP over an 
infinite planning horizon, the effects of several important parameters on the system’s 
total expected reward were studied. These parameters include the observation proba-
bility of receiving commands, the probability of attacking the honeypot, the probability 
of the honeypot being disclosed, and the transition rewards. The analyses of the MDP 
and POMDP in this paper were conducted using the R language and R functions. This 
paper is organised as follows: the second section introduces the methods of MDP and 
POMDP; Section 3 presents a created MDP model of the system and the parameters 
in the model; Section 4 shows the analyses of the system based on the MDP method; 
Section 5 presents analyses of the system based on the POMDP method, and the fi-
nal section is the conclusion.
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2. Methods  

2.1. The MDP 
The MDP method is one of the most significant methods employed in ar-

tificial intelligence (especially machine learning). The MDP is described using the tuple 
<S, A, T, R, γ> [13–15]: 

•	 S is the states’ set. 
•	 A is the actions set. 
•	 T is the transition probability from the state	s to the state s′ (s	∈	S,	s′	∈ S) after 

action a (a ∈ A). 
•	 R is an immediate reward after action a, and 
•	 γ (0 < γ < 1) is the discounted factor. 

An optimal policy is the goal of the MDP that maximises the total expect-
ed reward. An optimal policy over a finite planning horizon maximises the vector of the 
total expected reward until the horizon ends. The total expected reward (discounted) 
for an infinite planning horizon is employed to evaluate the gain of the discounted MDP 
in this paper.   

2.2. The Algorithms of the MDP 
VI, PI, LP, and Q-learning have been the algorithms utilised to find an op-

timal policy for the MDP. Theoretically, the results of the four kinds of algorithms should 
be the same. However, the results obtained using the algorithms may potentially differ 
with a great value, or convergence problems may potentially occur during the iterative 
process if the created MDP model is unreasonable, owing to unsuitable structure or in-
correct model parameters. Thus, all the algorithms are employed, and their results are 
evaluated to validate the model constructed in this paper. 

VI: An optimal policy for the MDP can be achieved by utilizing VI when 
the planning horizon is finite. In principle, the four algorithms (VI, PI, LP, and Q-learn-
ing) can be employed to find the optimal policy when the planning horizon is infinite. 
VI utilises the following equation of value iterations [16–18] to calculate the total 
expected reward for each state:

V(s)∶= maxa 
∑s′T(s, a, s′)(R(s, a, s′)+γV(s′))   (1) 

where T(s, a, s′) is the transition probability from state s to state s′ after 
action a. R(s, a, s′) is the immediate reward of the transition. V(s) and V(s′) are the total 
expected reward in state s and state s′, respectively. When the value difference between 
2 consecutive iterative steps is lower than the given tolerance, the iteration will be stopped. 

PI: A better policy is found using PI, through comparing the current policy 
to the previous one. PI generally begins arbitrarily with an initial policy and then policy 
evaluation and policy improvement are followed. The process of iterations continues until 
the same policy is obtained for 2 successive policy iterations, indicating that the optimal 
policy has been achieved. For each state s, Equation (2) is used for policy evaluation and 
Equation (3) is used for updating the policy (policy improvement) [16, 18]. 

V(s)∶= maxa 
∑s′T(s, π(s), s′)(R(s, π(s), s′)+γV(s′))   (2) 

where π(s) is an optimal policy of state s. 

π(s) = argmaxa 
(∑s′T(s, a, s′)(R(s, a, s′)+γV(s′)))   (3) 

LP: Since the MDP can be expressed as a linear program, the LP can find 
a static policy through solving the linear program. The following LP formulation [19] is 
used to find the optimal value function: 
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Solve 
 min Σs∀S V(s)       (4) 
  	

subject to

V(s) ≥ R(s, a, s′)+γΣs′∈sT(s, a, s′) V(s′)    (5) 

Q-learning: It is used to achieve the best policy with the greatest reward. 
It is a reinforcement learning method and allows an agent to learn the Q-value function 
that is an optimal action-value function. Q-learning can also be applied to non-MDP do-
mains [20]. The action-value function Q(s, a) is expressed as follows [21]: 

Q(s, a) = Σs′T (s, a, s′)(R(s, a, s′) + γV(s′))    (6) 

Q(s, a) can be initialised arbitrarily (for example, Q(s, a) = 0, ∀s ∈ S, ∀a ∈ A). 
From state s to state s′, a Q-learning update can be defined as follows [21, 22]:

Q(s, a) := (1 – β)Q (s, a) + β[R (s, a) + γmax Q (s′,	a)]  (7)

where β ∈ (0, 1) represents the learning rate. The best action a at state s 
can be chosen according to the optimal policy π(s). The iterative process continues until 
the final step of episode. The optimal policy is described as follows: 

π(s) = arg max Q (s, a)      (8) 
            a∈A

2.3. The POMDP 
A POMDP can be thought as a generalisation of an MDP, permitting state 

uncertainty in a Markov process [23]. In POMDP applications, the objective is generally 
to obtain a decision rule or policy to maximise the expected long-term reward [24]. In 
the POMDP, the belief state is a distribution of probabilities over all possible states. An 
optimal action relies only on the current belief state [25].  

The POMDP was defined as a tuple <S, A, T, R, O, B, γ> [26]: 

• O = {o1, o2, ..., ok} is an observation set. 
•	 B is a set of conditional observation probabilities B(o|s′, a). s′	is the new state 

after the state transition s → s′, o ∈ O.
•	 S, A, T, R, and γ are the same as those in the tuple of MDP. 

After having taken the action a and observing o, the belief state needs to 
be updated. If b(s) is the previous belief state, then the new belief state [25] is given by 

b′(s′) = aP(o|s′) ∑s P(s′|s, a) b(s)     (9) 

where a is a normalizing constant that makes the belief state sum to 1. 

The goal of POMDP planning is to obtain a sequence of actions {a0, a1, ..., at } 
at time steps that maximise the total expected reward [27], i.e., we choose actions that give

maxE
 
[∑t∞	γt	R(st,	at)]      (10) 

where st and at are the state and the action at time t, respectively. 

The optimal policy brings up the greatest expected reward for each belief 
state, which is the solution to the Bellman optimality equation through iterations beginning 
at an initial value function for an initial belief state. The equation can be formulated as [12]:  

V

a

=0
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V(b)	= maxa∈A[b(s)R(s,	a)	+	γ	Σo∈O	P(o|b,	a)V(b′)]   (11) 

3. The MDP Model of the Honeypot System

3.1. The Structure of the MDP Model  
The honeypot system is a network-attached system that is put in place to 

lure attackers. A botnet is utilised to forward spam, steal data, etc. A botmaster keeps 
a bot online. A honeypot has three states [12]: 

• State 1: Not attacked yet (waiting for an attack to join the botnet).  
• State 2: Compromised (becoming a member of the botnet). 
• State 3: Disclosed (not the botnet’s member anymore) due to the real identity 

having been discovered or interactions with the botmaster having been lost for 
an extended period of time. 

A honeypot can take one of the following actions at each state: 

• Action 1: Allows a botmaster to compromise the honeypot system and to 
implement commands. 

• Action 2: Does not allow the botmaster to compromise the system. 
• Action 3: Reinitialised as a new honeypot and reset to the initial state. 

A model of the honeypot system is established based on the MDP. Fig. 1. 
shows the state transitions of the states (1, 2, and 3) resulted from each of the actions 
(Action 1, Action 2, and Action 3). 

3.2. State Transition Matrix and Reward Matrix 
The transitions between the states in the created model of the system rely 

on one of the actions and on two important probabilities [12]. State 1 cannot be tran-
sitioned to State 3 directly; State 3 cannot be transitioned to State 2. The probability of 
a transition from State 3 to State 1 is 0 (under Action 1 or Action 2) or 1 (under Action 3). 
The following is a description of the two important probabilities: 

•	 Pa		: the probability of attacking the honeypot. 
•	 Pd			: the probability of the honeypot being disclosed. 

The benefit and expenses due to the state transitions or self-transitions 
are as follows [12]: 

•	 Eo: the operation expense due to running, deploying, and controlling a honeypot.  
•	 Er: the expense in reinitializing a honeypot. 
•	 El: the expense in liability when a honeypot operator becomes liable for 

implementing a botmaster’s commands if those commands include illicit 
actions. 

•	 Bi: the benefit of information when a honeypot collects an attacker’s information 
regarding techniques, codes, and tools. 

Figure 1. The state transitions due to each of the 3 actions: (a) Action 1, (b) Action 2, 
and (c) Action 3.

3 3 3

1 1 12 2 2
(a) (b) (c)
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The state transition probability matrix T and the reward matrix R under 
each action are formulated as follows: 

1)	T and R under Action 1 are  
 
									1 – Pa   Pa   0 
T =      0       1     0        (12) 
            0       0     1 
 
									– Eo         Bi	–	Eo         0 
R =      0      Bi	–	Eo – El      0       (13) 
            0             0           – Eo

2)	T	and	R	under Action 2 are  
 
         1         0         0 
T =   0      1 – Pd    Pd       (14) 
         0         0         1 
 
									– Eo          0                0 
R =      0      Bi	–	Eo     – Bi	–	Eo      (15) 
            0          0              –	Eo

3)	T and R under Action 3 are 
 
         1   0   0 
T =   1   0   0        (16) 
         1   0   0 
 
													– Er        0     0 
R =   – Bi	–	Er    0     0       (17) 
													– Er        0     0

4. Analyses of the Honeypot System Based on MDP 

4.1. MDP-based Analyses over an Infinite Planning Horizon 
Let Pa = 0.6, Pd							= 0.6, Eo	= 1, Er	= 2.5, Bi	= 16, El	= 14, and γ = 0.85. Analy-

ses are performed using the R language and its functions. By substituting the data into 
equations (12–17), the values of T and R under various actions (due to various policies) 
can be computed: 

T and R under Action 1 become 

         0.4   0.6   0            –1    15     0 
T =     0      1     0 , R =     0      1      0  
           0      0     1             0      0    –1

T and R under Action 2 are 

         1      0       0            –1    0       0 
T =   0    0.4    0.6 , R =     0   15   –17  
         0      0       1             0     0     –1
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T and R under Action 3 are 

         1    0    0          –2.5     0   0 
T =   1    0    0  , R =   –18.5  0   0 
         1    0    0          –2.5     0   0

Various policies are evaluated, and Tab. 1. shows the result of the total 
expected rewards for states with various policies. For example, the policy c (1, 1, 3) in-
dicates that Action 1, Action 1, and Action 3 are taken on State 1, State 2, and State 3, 
respectively. V1, V2, and V3 represent the total expected reward for State 1, State 2, 
and State 3, respectively.  

The four kinds of algorithms (VI, PI, LP, and Q-learning) can be imple-
mented using the values of T	and R under various actions. These algorithms are used in 
this paper and the optimal policy achieved using the four algorithms is c (1, 1, 3) in each 
case. The results for the total expected rewards for each state are compared to evaluate 
the validity of the MDP model in this paper. The results of the honeypot system (based 
on a discounted MDP with γ = 0.85) over an infinite planning horizon are shown in Tab. 2. 

VI consists of solving Bellman’s equation iteratively. Jacob’s algorithm 
and Gauss-Seidel’s algorithm are employed in the VI method respectively, so that there 
are two variants of VI algorithm employed. In Gauss-Seidel’s value iterations, V(k+1) is 
used instead of V(k) whenever this value has been calculated; k is the iteration number. 
In this situation, the convergence speed is enhanced. It is also shown that its accuracy 
is improved in comparison to Jacob’s algorithm (Tab. 2.). The result of Gauss-Seidel’s 
value iteration algorithm shows that the total expected reward is 18.1818 (the highest 
value) if the MDP starts in state 1 while it is 6.6667 (the lowest value) if the MDP starts 
in state 2. The Q-learning result in Tab. 2. was obtained when the number of iterations 
was 150,000. The results of the VI (Gauss-Seidel's algorithm), PI, and LP are the same, 
and very close to the Q-learning result, indicating the MDP model created is valid, and 
that the model parameters are indeed suitable.

Table 1.  The total expected reward of each state for four various policies (γ = 0.85).

Policy c (1, 1, 2) c	(1, 1, 3) c	(1, 2, 3) c	(2, 1, 3)

V1 18.1818 18.1818 13.4431 -6.6667 

V2 6.6667 6.6667 0.5342 6.6667 

V3 -6.6667 12.9545 8.9266 -8.1667 

Table 2.  Analyses of the honeypot system based on various algorithms over an infinite planning 
horizon (γ = 0.85).

Algorithm V1 V2 V3

VI (Jacob's algorithm) 17.9622 6.4470 12.7349 

VI (Gauss-Seidel's 
algorithm) 

18.1818   6.6667 12.9545 

PI 18.1818   6.6667 12.9545 

LP 18.1818   6.6667 12.9545 

Q-learning 18.1699   6.6667 12.9206 
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4.2. The MDP-based Analysis for the Honeypot System over a Finite 
Planning Horizon 

The above data regarding probabilities, the benefit, and expenses (i.e., 
Pa, Pd			, Eo, Er, Bi, and El) are also utilised in the analysis of the system with the discount 
γ = 0.85 over a finite planning horizon based on the MDP method. Tab. 3. shows the to-
tal expected rewards of the three states that were calculated using value iterations over 
a 50-step planning horizon. V1(n), V2(n), and V3(n) are the total expected reward at 
step n for State 1, State 2, and State 3, respectively. It is shown that the total expected 
rewards V1(n), V2(n), and V3(n) are very close to V1, V2, and V3 for the infinite plan-
ning horizon in Tab. 2. when epoch n ≤ 20.

5. Analyses of the Honeypot System Based on the POMDP 

5.1. Observations and Observation Probabilities in the 
Honeypot System 

The POMDP model of the system is based on the MDP model shown in 
Fig. 1., and observations as well as observation probabilities are considered to model 
uncertainty in the POMDP model. Three observations [12] are employed to compute and 
monitor the system belief state: 

•	 Unchanged: The honeypot does not have any observed change, indicating it is 
still in the waiting state (State 1). 

•	 Absence:	It means an absence of botmasters’ commands after the honeypot was 
compromised. This situation can be due to 1) the honeypot being detected and 
disconnected from the botnet, or 2) botmasters being busy with other things (for 
example, compromising other machines), leading to uncertainty in determining 
whether the honeypot is in State 2 (compromised) or State 3 (disclosed). 

•	 Commands: After the honeypot is compromised, it receives the command 
information from a botmaster, indicating that it is not disclosed yet and still in State 2. 

Table 3.  Total expected rewards for three states calculated using value iterations over a 50-step 
planning horizon (γ = 0.85).

Epoch n V1(n) V2(n) V3(n)

0 18.1798 6.6647 12.9526 

5 18.1774 6.6622 12.9501 

10 18.1718 6.6567 12.9445 

15 18.1592 6.6441 12.9320 

20 18.1309 6.6158 12.9037 

25 18.0672 6.5520 12.8399 

30 17.9234 6.4083 12.6962 

35 17.5995 6.0843 12.3722 

40 16.8691 5.3542 11.6415 

45 15.1715 3.7086 9.8657 

46 14.5479 3.1866 9.0898 

47 13.6351 2.5725 7.7289 

48 12.0340 1.8500 4.8100 

49 8.6 1.0 -1.0 

50 0 0 0 
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In State 2, the probability of receiving commands is denoted by Po1, while 
the probability of absence is denoted by Po2. Therefore, we have the following observa-
tion probabilities:  

For the honeypot in State 1:    P(Unchanged) = 1, P(Commands) = P(Absence) = 0 
For the honeypot in State 2:	P(Unchanged) = 0,	P(Commands) = Po1 
     P(Absence) = Po2 = 1 −	Po1 
For the honeypot in State 3:   P(Unchanged) = P(Commands) = 0, P(Absence) = 1 

5.2. Analyses Based on Various Solution Methods of the POMDP 
over An Infinite Planning Horizon 

Analyses over an infinite planning horizon for a discounted POMDP of the 
honeypot system are performed. Let Pa  = 0.6, Pd					= 0.6, Eo	= 1, Er	= 2.5, Bi = 16, El	= 14, 
and γ = 0.85. The following solution methods or algorithms [23, 24, 26–29, 30] are used 
to solve the POMDP problem: Grid, Enumeration, Two Pass, Witness, Incremental Prun-
ing, and SARSOP. The total expected reward of the honeypot system based on POMDP 
is denoted by Vt in this paper. The values of Vt at three different observation probabili-
ties of receiving commands (Po1 = 0.5, 0.6, and 0.7) are computed using various solution 
methods of POMDP. The result of Vt is shown in Tab. 4. The values of Incremental Prun-
ing and SARSOP are very close to the results of the other four methods and the results of 
the four methods are the same. 

5.3. The Analysis for the Honeypot System with Various Observation 
Probabilities of Receiving Commands 

The total expected reward Vt of the honeypot system with various obser-
vation probabilities of receiving commands (Po1) is analysed for the discounted POMDP 
over an infinite planning horizon. Grid is used to solve the POMDP problem. It tries to 
approximate the value function over an entire state space according to the estimation 
for a finite number of belief states on the chosen grid [31]. The following data are used 
in the analysis: Pa = 0.6, Pd				= 0.6, Eo	= 1, Er	= 2.5, Bi	= 16, El	=	14, and γ = 0.85; Po1 = 0.1, 
0.2, 0.3, …, 0.9. Fig. 2. shows that the total expected reward Vt of the honeypot system 
increases as the observation probability (Po1) of receiving commands rises. In the follow-
ing sections of this paper, the Grid method is also used in solving the POMDP problem.   

Table 4.  The total expected reward of the honeypot system based on various solution methods of 
POMDP.

Methods Vt (Po1 = 0.5) Vt (Po1 = 0.6) Vt (Po1 = 0.7)

Grid 9.850447 10.187263 10.449232 

Enumeration 9.850447 10.187263 10.449232 

Two Pass 9.850447 10.187263 10.449232 

Witness 9.850447 10.187263 10.449232 

Incremental Pruning 9.848475	 10.185292 10.447260 

SARSOP 9.850403	 10.187213	 10.449210 
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5.4. Analyses for the system with various Pa and Pd 
An analysis for the discounted POMDP with various Pa over an infinite 

planning horizon is conducted. The following data are utilised: Pd					=0.6, Eo	= 1, Er	= 2.5, 
Bi	= 16, El	= 14, and γ = 0.85. The total expected reward Vt of the honeypot system at 
various Pa for various	Po1 is analysed and the result is shown in Fig. 3. Vt increases with 
higher values of Pa, although the rate of increase steadily diminishes. The increased Pa 

provides the honeypot with more opportunities for collecting valuable information about 
attackers. Vt is larger when Po1 is larger. 

Let Pa = 0.6, Eo	= 1, Er	= 2.5, Bi	= 16, El	= 14, and γ = 0.85. The Vt at vari-
ous Pd for various Po1 is analysed over an infinite planning horizon, and Fig. 4. shows the 
results. Vt	is higher when Po1 is higher, but the value of Vt when Po1 = 0.1 is very close 
to that of Vt when Po1 = 0.5 (if Pd		 < 0.5). For Po1 = 0.1, Vt falls as Pd	 is increased from 
0.1 to 0.8 and is unchanged when Pd	 moves from 0.8 to 0.9; for Po1= 0.5, Vt decreases as 
Pd				is increased from 0.1 to 0.6 and is unchanged as Pd		 goes from 0.6 to 0.9; for Po1 = 0.9, 
Vt declines as Pd		 is increased from 0.1 to 0.5, though it does not change as Pd		 moves 
from 0.5 to 0.9. There is no significant difference in Vt for Po1 = 0.5 and Po1 = 0.9 when 
Pd		 changes from 0.5 to 0.9.   

Figure 3. The total expected reward Vt	of the honeypot system 
at various Pa.

Figure 2. The total expected reward Vt of the honeypot system 
at various Po1.
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5.5. Analyses for the System with Various Transition Rewards 
Analyses for the honeypot system with various transition rewards over an 

infinite planning horizon are performed. The following data are utilised: Pa = 0.6, Pd									= 0.6, 
Eo	= 1, Er	= 2.5, El	= 14, and γ = 0.85. The total expected reward Vt at various Pa for 
various Po1 is analysed, and the results are shown in Fig. 5. Vt initially increases slightly 
(Bi	< 14) and then more rapidly (Bi > 14) with the increase of Bi. Vt for various Po1(0.1, 0.5, 
and 0.9) is the same when Bi= 10, 11, and 12. Vt is the same for Po1 = 0.1 and 0.5 when 
Bi = 13. When Bi > 13, Vt is larger if Po1 is larger. 

Figure 5. The total expected reward Vt	of the honeypot system Vt  

at various Bi.

Figure 4. The total expected reward Vt of the honeypot system 
at various Pd.
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Let Pa = 0.6, Pd						= 0.6, Eo	= 1, Er	= 2.5, Bi	= 16, and γ = 0.85. The total ex-
pected reward Vt at various El for various Po1 is analysed over an infinite planning ho-
rizon and Fig. 6. shows the results. Vt decreases when El is increased from 12 to 16. 
Vt		is the same for Po1 = 0.1 and 0.5 as El rises from 17 to 20. It is the same for all the 
three values of Po1 (0.1, 0.5, and 0.9) when El goes from 19 to 20.  

6. Conclusion 
The MDP-based predictive modelling for the honeypot system has demon-

strated that the model and algorithms in this paper are suitable for performing analyses 
over both a finite planning horizon and an infinite planning horizon (for a discounted MDP), 
and that they are effective at finding an optimal policy and maximizing the total expected 
rewards of the states of the honeypot system. The results of the total expected reward 
using Gauss-Seidel’s algorithm of VI, PI, and LP are the same, and the result of Q-learn-
ing is very close to the same result, indicating the MDP model created in this paper is 
valid and that the model parameters are suitable. 

In the predictive modelling of the honeypot system based on the dis-
counted POMDP over an infinite planning horizon, the total expected reward Vt	of the 
honeypot system increases with the increase of the observation probability of receiving 
commands (Po1). It also rises as Pa is increased or Bi is increased. The increased Pa leads 
to more opportunities for the honeypot to collect valuable information about attackers. 
As Pd			 increases, Vt declines at first and then levels out. As El increases, Vt	decreases by 
successively smaller amounts until it eventually flattens out. 
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